6,546 research outputs found

    The Viking surface sampler

    Get PDF
    A surface sampler subsystem for the Viking Lander has been designed, fabricated, cleaned, and successfully tested. Testing has included component level tests to qualification environment and subsystem level tests. This development hardware has also been integrated into a System Test Bed (STB) for the lander system. In addition to the normal dynamic and thermal environments the surface sampler hardware has been tested in an aircraft to simulate the effects of the reduced Martian gravity. Although problems have been encountered with the first-build and integration, the basic design appears to be sound and hardware qualification is scheduled for late 1973

    Internal thermal noise in the LIGO test masses : a direct approach

    Get PDF
    The internal thermal noise in LIGO's test masses is analyzed by a new technique, a direct application of the Fluctuation-Dissipation Theorem to LIGO's readout observable, x(t)=x(t)=(longitudinal position of test-mass face, weighted by laser beam's Gaussian profile). Previous analyses, which relied on a normal-mode decomposition of the test-mass motion, were valid only if the dissipation is uniformally distributed over the test-mass interior, and they converged reliably to a final answer only when the beam size was a non-negligible fraction of the test-mass cross section. This paper's direct analysis, by contrast, can handle inhomogeneous dissipation and arbitrary beam sizes. In the domain of validity of the previous analysis, the two methods give the same answer for Sx(f)S_x(f), the spectral density of thermal noise, to within expected accuracy. The new analysis predicts that thermal noise due to dissipation concentrated in the test mass's front face (e.g. due to mirror coating) scales as 1/r021/r_0^2, by contrast with homogeneous dissipation, which scales as 1/r01/r_0 (r0r_0 is the beam radius); so surface dissipation could become significant for small beam sizes.Comment: 6 pages, RevTex, 1 figur

    Spider webs, stable isotopes and molecular gut content analysis: Multiple lines of evidence support trophic niche differentiation in a community of Hawaiian spiders

    Get PDF
    1.Adaptive radiations are typically characterized by niche partitioning among their constituent species. Trophic niche partitioning is particularly important in predatory animals, which rely on limited food resources for survival.2.We test for trophic niche partitioning in an adaptive radiation of Hawaiian Tetragnatha spiders, which have diversified in situ on the Hawaiian Islands. We focus on a community of nine species belonging to two different clades, one web-building and the other actively hunting, which co-occur in wet forest on East Maui. We hypothesize that trophic niches differ significantly both: (a) among species within a clade, indicating food resource partitioning, and (b) between the two clades, corresponding to their differences in foraging strategy.3.To assess niches of the spider species, we measure: (a) web architecture, the structure of the hunting tool, and (b) site choice, the physical placement of the web in the habitat. We then test whether differences in these parameters translate into meaningful differences in trophic niche by measuring (c) stable isotope signatures of carbon and nitrogen in the spiders\u27 tissues, and (d) gut content of spiders based on metabarcoding data.4.We find significant interspecific differences in web architecture and site choice. Importantly, these differences are reflected in stable isotope signatures among the five web-building species, as well as significant isotopic differences between web-builders and active hunters. Gut content data also show interspecific and inter-clade differences. Pairwise overlaps of web architecture between species are positively correlated with overlaps of isotopic signature.5.Our results reveal trophic niche partitioning among species within each clade, as well as between the web-building and actively hunting clades. Based on the correlation between web architecture and stable isotopes, it appears that the isotopic signatures of spiders\u27 tissues are influenced by architectural differences among their webs. Our findings indicate an important link between web structure, microhabitat preference and diet in the Hawaiian Tetragnatha

    Enhancement of the stability of genetic switches by overlapping upstream regulatory domains

    Full text link
    We study genetic switches formed from pairs of mutually repressing operons. The switch stability is characterised by a well defined lifetime which grows sub-exponentially with the number of copies of the most-expressed transcription factor, in the regime accessible by our numerical simulations. The stability can be markedly enhanced by a suitable choice of overlap between the upstream regulatory domains. Our results suggest that robustness against biochemical noise can provide a selection pressure that drives operons, that regulate each other, together in the course of evolution.Comment: 4 pages, 5 figures, RevTeX

    Variation of turbulent burning rate of methane, methanol, and iso-octane air mixtures with equivalence ratio at elevated pressure

    Get PDF
    Turbulent burning velocities for premixed methane, methanol, and iso-octane/air mixtures have been experimentally determined for an rms turbulent velocity of 2 m/s and pressure of 0.5 MPa for a wide range of equivalence ratios. Turbulent burning velocity data were derived using high-speed schlieren photography and transient pressure recording; measurements were processed to yield a turbulent mass rate burning velocity, utr. The consistency between the values derived using the two techniques, for all fuels for both fuel-lean and fuel-rich mixtures, was good. Laminar burning measurements were made at the same pressure, temperature, and equivalence ratios as the turbulent cases and laminar burning velocities and Markstein numbers were determined. The equivalence ratio (φ) for peak turbulent burning velocity proved not always coincident with that for laminar burning velocity for the same fuel; for isooctane, the turbulent burning velocity unexpectedly remained high over the range φ = 1 to 2. The ratio of turbulent to laminar burning velocity proved remarkably high for very rich iso-octane/air and lean methane/air mixtures

    Stochastic modeling of cargo transport by teams of molecular motors

    Full text link
    Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\"uller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1

    The detection of geothermal areas from Skylab thermal data

    Get PDF
    Skylab-4 X-5 thermal data of the geysers area was analyzed to determine the feasibility of using midday Skylab images to detect geothermal areas. The hottest ground areas indicated on the Skylab image corresponded to south-facing barren or sparsely vegetated slopes. A geothermal area approximately 15 by 30 m coincided with one of the hottest areas indicated by Skylab. This area could not be unambiguously distinguished from the other areas which are believed to be hotter than their surroundings as a result of their topography, and micrometeorological conditions. A simple modification of a previous thermal model was performed and the predicted temperatures for the hottest slopes using representative values was in general agreement with the observed data. It is concluded that data from a single midday Skylab pass cannot be used to locate geothermal areas

    EPA 9—Collaborate as a Member of an Interprofessional Team: a Short Communication from the AAMC Core EPAs for Entering Residency Pilot Schools

    Get PDF
    Members of the Association of American Medical Colleges Core Entrustable Professional Activities (EPAs) for Entering Residency Pilot worked to conceptualize how graduates might be entrusted for EPA 9: Collaborate as a member of an interprofessional team. Through an iterative group process informed by the literature and application to local curriculum and clinical experiences, we drafted a developmental framework and curriculum mapping tool. Ultimately, entrustment requires assessment in clinical settings. Nonetheless, teamwork and communication skills that are relevant to future entrustment can be taught and assessed in pre-clinical contexts such as small groups to ensure students are on an entrustment trajectory

    Negotiated control between the manual and visual systems for visually guided hand reaching movements

    Full text link
    Abstract Background Control of reaching movements for manual work, vehicle operation, or interactions with manual interfaces requires concurrent gaze control for visual guidance of the hand. We hypothesize that reaching movements are based on negotiated strategies to resolve possible conflicting demands placed on body segments shared by the visual (gaze) and manual (hand) control systems. Further, we hypothesize that a multiplicity of possible spatial configurations (redundancy) in a movement system enables a resolution of conflicting demands that does not require sacrificing the goals of the two systems. Methods The simultaneous control of manual reach and gaze during seated reaching movements was simulated by solving an inverse kinematics model wherein joint trajectories were estimated from a set of recorded hand and head movements. A secondary objective function, termed negotiation function, was introduced to describe a means for the manual reach and gaze directing systems to balance independent goals against (possibly competing) demands for shared resources, namely the torso movement. For both systems, the trade-off may be resolved without sacrificing goal achievement by taking advantage of redundant degrees of freedom. Estimated joint trajectories were then compared to joint movement recordings from ten participants. Joint angles were predicted with and without the negotiation function in place, and model accuracy was determined using the root-mean-square errors (RMSEs) and differences between estimated and recorded joint angles. Results The prediction accuracy was generally improved when negotiation was included: the negotiated control reduced RMSE by 16% and 30% on average when compared to the systems with only manual or visual control, respectively. Furthermore, the RMSE in the negotiated control system tended to improve with torso movement amplitude. Conclusions The proposed model describes how multiple systems cooperate to perform goal-directed human movements when those movements draw upon shared resources. Allocation of shared resources can be undertaken by a negotiation process that is aware of redundancies and the existence of multiple solutions within the individual systems.http://deepblue.lib.umich.edu/bitstream/2027.42/134579/1/12984_2012_Article_626.pd
    • …
    corecore